

IGBT Module

SK100MLI066T

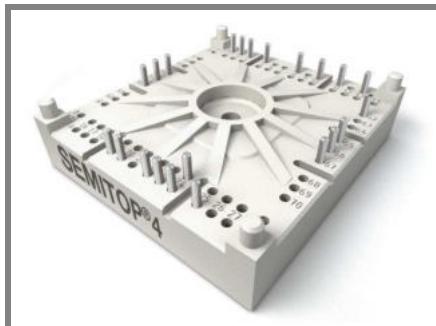
Preliminary Data

Features

- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Trench IGBT technology
- CAL technology FWD
- Integrated NTC temperature sensor

Typical Applications*

- Multi level inverter


Remarks

- $V_{\text{isol}} = 3000\text{V AC,1s,50Hz}$
- Dynamic measure: DUT= IGBT (Gate pin 55) and Neutral Clamp Diode (Kathode pin 56) as free-wheeling diode

Absolute Maximum Ratings		$T_s = 25^\circ\text{C}$, unless otherwise specified		
Symbol	Conditions	Values		Units
IGBT				
V_{CES}	$T_j = 25^\circ\text{C}$	600		V
I_C	$T_j = 175^\circ\text{C}$ $T_s = 25^\circ\text{C}$ $T_s = 70^\circ\text{C}$	105 80		A A
I_{CRM}	$I_{\text{CRM}} = 2 \times I_{\text{Cnom}}$	200		A
V_{GES}		± 20		V
t_{psc}	$V_{\text{CC}} = 360\text{ V}; V_{\text{GE}} \leq 20\text{ V}; T_j = 125^\circ\text{C}$ $V_{\text{CES}} < 600\text{ V}$	6		μs
Inverse Diode				
I_F	$T_j = 175^\circ\text{C}$ $T_s = 25^\circ\text{C}$ $T_s = 70^\circ\text{C}$	110 85		A A
I_{FRM}	$I_{\text{FRM}} = 2 \times I_{\text{Fnom}}$	200		A
Freewheeling Diode				
I_F	$T_j = 175^\circ\text{C}$ $T_s = 25^\circ\text{C}$ $T_s = 70^\circ\text{C}$	110 85		A A
I_{FRM}	$I_{\text{FRM}} = 2 \times I_{\text{Fnom}}$	200		A
Module				
$I_{\text{k(RMS)}}$				A
T_{vj}		-40 ... +175		$^\circ\text{C}$
T_{stg}		-40 ... +125		$^\circ\text{C}$
V_{isol}	AC, 1 min.	2500		V

Characteristics		$T_s = 25^\circ\text{C}$, unless otherwise specified			
Symbol	Conditions	min.	typ.	max.	
IGBT					
$V_{\text{GE(th)}}$	$V_{\text{GE}} = V_{\text{CE}}, I_C = 1,6\text{ mA}$	5	5,8	6,5	V
I_{CES}	$V_{\text{GE}} = 0\text{ V}, V_{\text{CE}} = V_{\text{CES}}$ $T_j = 25^\circ\text{C}$ $T_j = 125^\circ\text{C}$			0,0052	mA
I_{GES}	$V_{\text{CE}} = 0\text{ V}, V_{\text{GE}} = 20\text{ V}$ $T_j = 25^\circ\text{C}$			1200	nA
V_{CE0}	$T_j = 25^\circ\text{C}$ $T_j = 150^\circ\text{C}$	0,8 0,7	1,1 1		V
r_{CE}	$V_{\text{GE}} = 15\text{ V}$ $T_j = 25^\circ\text{C}$ $T_j = 150^\circ\text{C}$	6,5 9,5	8 10,5		$\text{m}\Omega$
$V_{\text{CE(sat)}}$	$I_{\text{Cnom}} = 100\text{ A}, V_{\text{GE}} = 15\text{ V}$ $T_j = 25^\circ\text{C}_{\text{chiplev.}}$ $T_j = 150^\circ\text{C}_{\text{chiplev.}}$	1,45 1,65	1,85 2,05		V
C_{ies} C_{oes} C_{res}	$V_{\text{CE}} = 25, V_{\text{GE}} = 0\text{ V}$ $f = 1\text{ MHz}$			6,28 0,4 0,19	nF
Q_G	$V_{\text{GE}} = -7\text{V...+15V}$		1000		nC
$t_{\text{d(on)}}$ t_r E_{on}	$R_{\text{Gon}} = 4\text{ }\Omega$ $\text{di/dt} = 3100\text{ A}/\mu\text{s}$	$V_{\text{CC}} = 300\text{V}$ $I_C = 100\text{A}$	136 48 2,5		ns ns mJ
$t_{\text{d(off)}}$ t_f E_{off}	$R_{\text{Goff}} = 4\text{ }\Omega$ $\text{di/dt} = 3100\text{ A}/\mu\text{s}$	$T_j = 150^\circ\text{C}$ $V_{\text{GE}} = -7/+15\text{V}$	457 50 4,2		ns ns mJ
$R_{\text{th(j-s)}}$	per IGBT		0,65		K/W

SEMITOP® 4

IGBT Module

SK100MLI066T

Preliminary Data

Features

- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Trench IGBT technology
- CAL technology FWD
- Integrated NTC temperature sensor

Typical Applications*

- Multi level inverter

Remarks

- $V_{\text{isol}} = 3000\text{V AC,1s,50Hz}$
- Dynamic measure: DUT= IGBT (Gate pin 55) and Neutral Clamp Diode (Kathode pin 56) as free-wheeling diode

Characteristics		Symbol Conditions	min.	typ.	max.	Units
Inverse Diode		$V_F = V_{EC}$	$I_{F\text{nom}} = 100\text{ A}; V_{GE} = 0\text{ V}$	$T_j = 25\text{ }^{\circ}\text{C}_{\text{chiplev.}}$	1,35	V
				$T_j = 150\text{ }^{\circ}\text{C}_{\text{chiplev.}}$	1,31	V
V_{F0}				$T_j = 25\text{ }^{\circ}\text{C}$	0,9	V
				$T_j = 150\text{ }^{\circ}\text{C}$	0,85	V
r_F				$T_j = 25\text{ }^{\circ}\text{C}$	4,5	$\text{m}\Omega$
				$T_j = 150\text{ }^{\circ}\text{C}$	6,3	$\text{m}\Omega$
I_{RRM}	$I_F = 100\text{ A}$		$T_j = 150\text{ }^{\circ}\text{C}$		84	A
Q_{rr}	$\text{di/dt} = 3100\text{ A}/\mu\text{s}$				6	μC
E_{rr}	$V_R = 300\text{V}$				1,9	mJ
$R_{th(j-s)D}$	per diode				0,9	K/W
Freewheeling Diode (Neutral Clamp Diode)						
$V_F = V_{EC}$	$I_{F\text{nom}} = 100\text{ A}; V_{GE} = 0\text{ V}$		$T_j = 25\text{ }^{\circ}\text{C}_{\text{chiplev.}}$		1,35	V
			$T_j = 150\text{ }^{\circ}\text{C}_{\text{chiplev.}}$		1,31	V
V_{F0}			$T_j = 25\text{ }^{\circ}\text{C}$		0,9	V
			$T_j = 150\text{ }^{\circ}\text{C}$		0,85	V
r_F			$T_j = 25\text{ }^{\circ}\text{C}$		4,5	V
			$T_j = 150\text{ }^{\circ}\text{C}$		6,3	V
I_{RRM}	$I_F = 100\text{ A}$		$T_j = 150\text{ }^{\circ}\text{C}$		80	A
Q_{rr}	$\text{di/dt} = 3000\text{ A}/\mu\text{s}$				18	μC
E_{rr}	$V_R = 300\text{V}$				1,9	mJ
$R_{th(j-s)FD}$	per diode				0,9	K/W
M_s	to heat sink			2,5	2,75	Nm
w					60	g
Temperature sensor						
R_{100}	$T_s = 100\text{ }^{\circ}\text{C} (R_{25} = 5\text{k}\Omega)$				493±5%	Ω

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

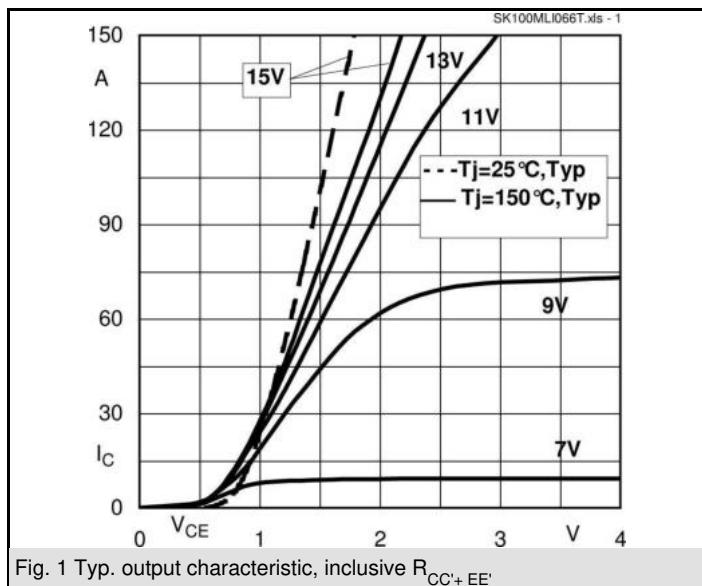


Fig. 1 Typ. output characteristic, inclusive $R_{CC} + EE'$

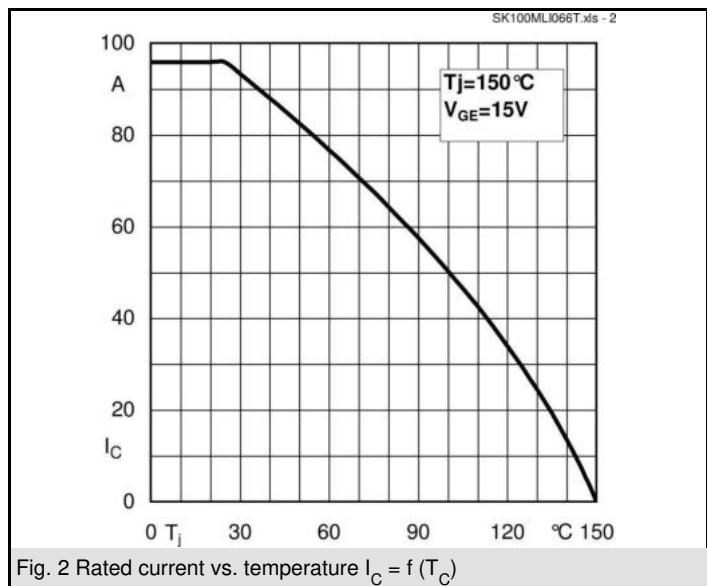


Fig. 2 Rated current vs. temperature $I_C = f (T_C)$

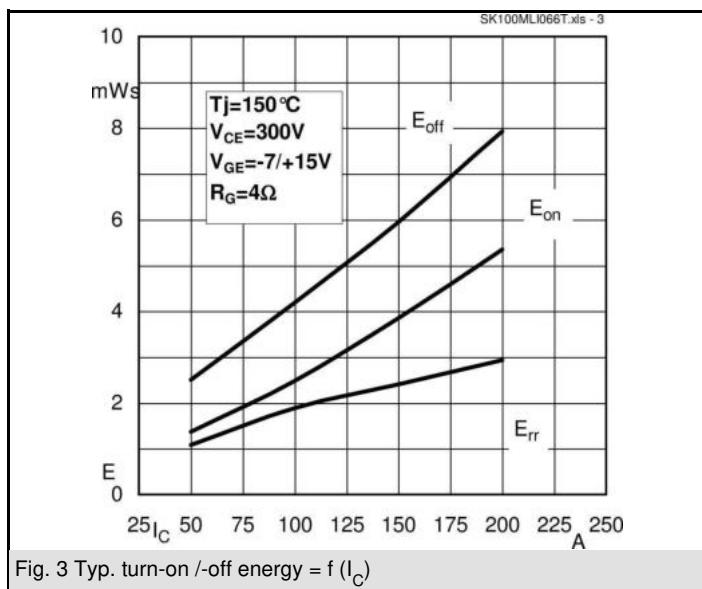


Fig. 3 Typ. turn-on /-off energy = f (I_C)

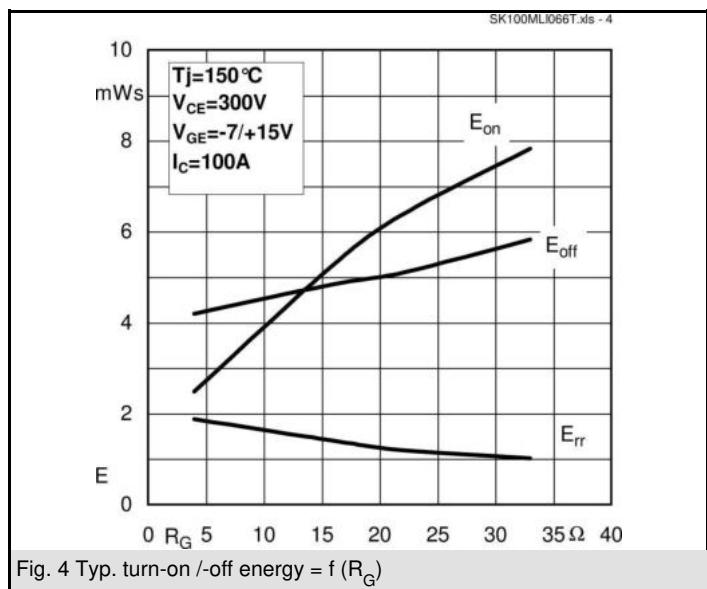


Fig. 4 Typ. turn-on /-off energy = f (R_G)

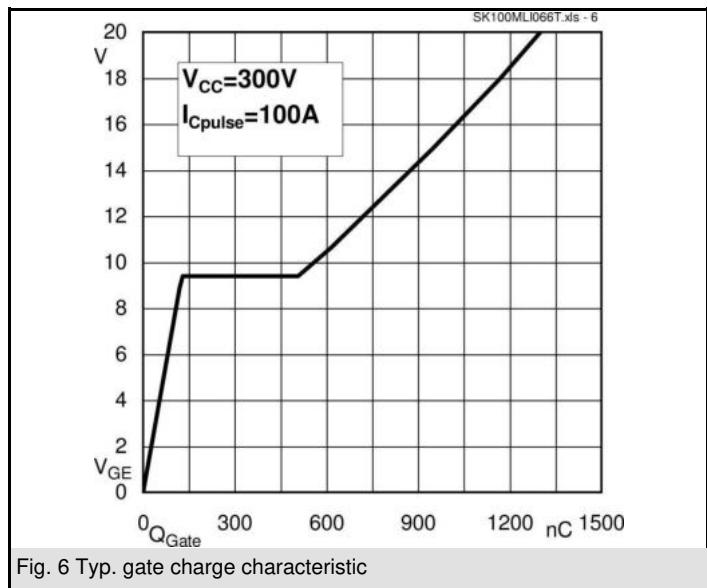


Fig. 6 Typ. gate charge characteristic

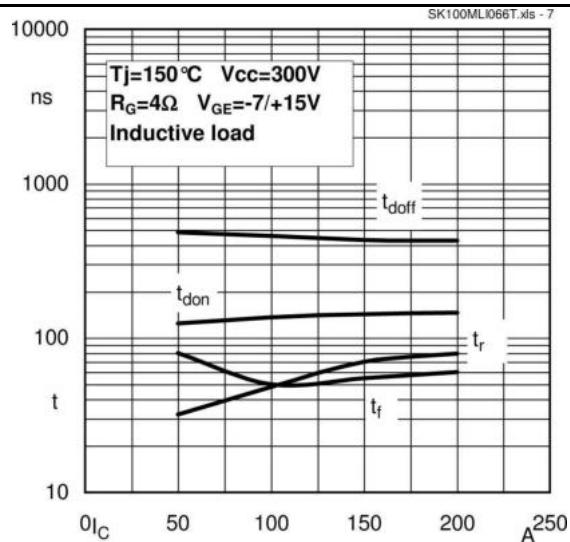


Fig. 7 Typ. switching times vs. I_C

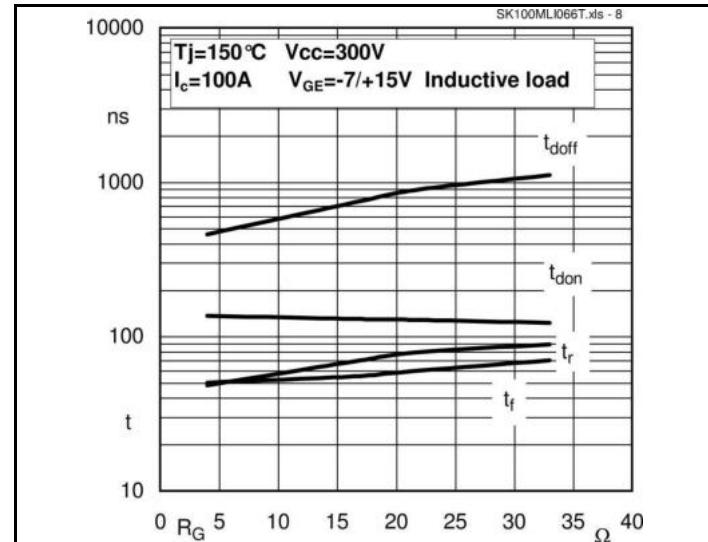
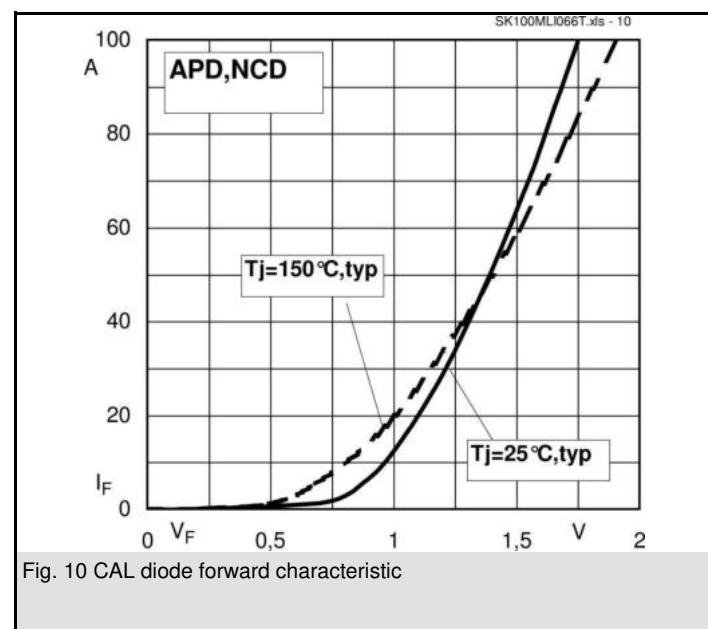
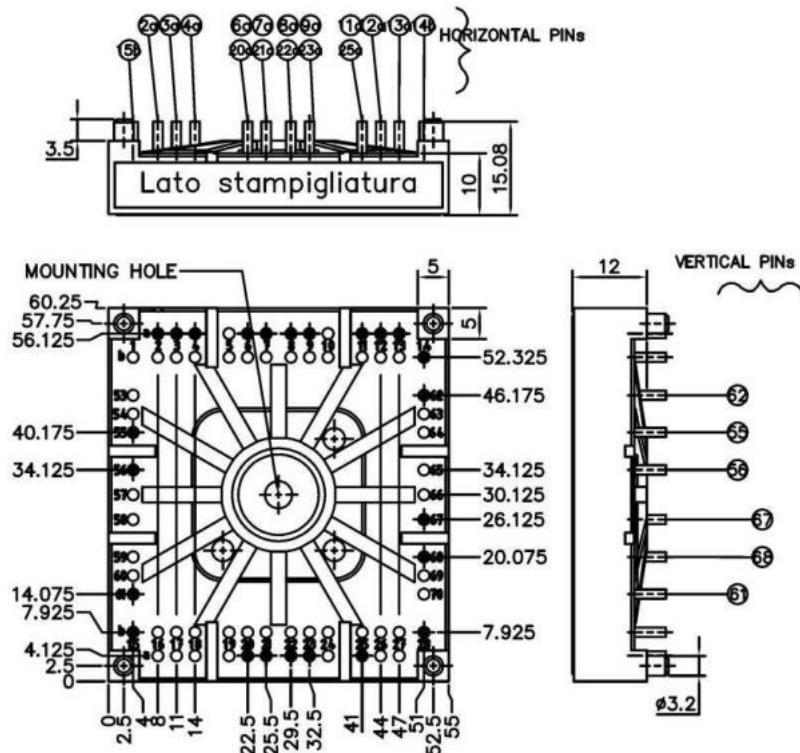
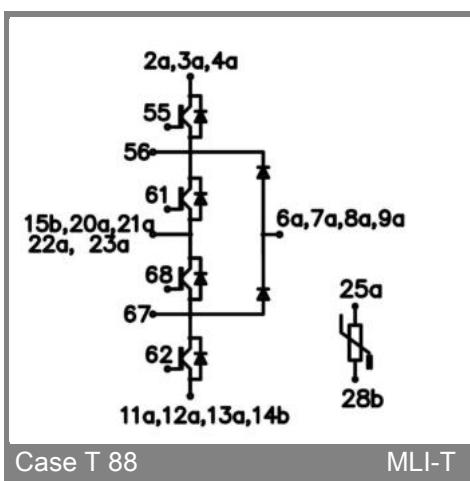


Fig. 8 Typ. switching times vs. gate resistor R_G


Fig. 10 CAL diode forward characteristic

UL recognized

file no. E 63 532

Case T 88 (Suggested hole diameter for the solder pins in the circuit board: 2mm. Suggested hole diameter for the mounting pins in the circuit board: 3,6mm)

Case T 88

MLI-T